Extremal f-trees and embedding spaces for molecular graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eccentric Connectivity Index: Extremal Graphs and Values

Eccentric connectivity index has been found to have a low degeneracy and hence a significant potential of predicting biological activity of certain classes of chemical compounds. We present here explicit formulas for eccentric connectivity index of various families of graphs. We also show that the eccentric connectivity index grows at most polynomially with the number of vertices and determine ...

متن کامل

Extremal Graphs for Blow-Ups of Cycles and Trees

The blow-up of a graph H is the graph obtained from replacing each edge in H by a clique of the same size where the new vertices of the cliques are all different. Erdős et al. and Chen et al. determined the extremal number of blow-ups of stars. Glebov determined the extremal number and found all extremal graphs for blowups of paths. We determine the extremal number and find the extremal graphs ...

متن کامل

Embedding Spanning Trees in Random Graphs

We prove that if T is a tree on n vertices with maximum degree ∆ and the edge probability p(n) satisfies: np ≥ C max{∆ log n, n } for some constant > 0, then with high probability the random graph G(n, p) contains a copy of T . The obtained bound on the edge probability is shown to be essentially tight for ∆ = n.

متن کامل

Embedding Complete Binary Trees in Product Graphs

This paper shows how to embed complete binary trees in products of complete binary trees products of shu e exchange graphs and products of de Bruijn graphs The main emphasis of the embedding methods presented here is how to emulate arbitrarily large complete bi nary trees in these product graphs with low slowdown For the embedding methods presented here the size of the host graph can be xed to ...

متن کامل

The second geometric-arithmetic index for trees and unicyclic graphs

Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 1983

ISSN: 0166-218X

DOI: 10.1016/0166-218x(83)90041-0