Extremal f-trees and embedding spaces for molecular graphs
نویسندگان
چکیده
منابع مشابه
Eccentric Connectivity Index: Extremal Graphs and Values
Eccentric connectivity index has been found to have a low degeneracy and hence a significant potential of predicting biological activity of certain classes of chemical compounds. We present here explicit formulas for eccentric connectivity index of various families of graphs. We also show that the eccentric connectivity index grows at most polynomially with the number of vertices and determine ...
متن کاملExtremal Graphs for Blow-Ups of Cycles and Trees
The blow-up of a graph H is the graph obtained from replacing each edge in H by a clique of the same size where the new vertices of the cliques are all different. Erdős et al. and Chen et al. determined the extremal number of blow-ups of stars. Glebov determined the extremal number and found all extremal graphs for blowups of paths. We determine the extremal number and find the extremal graphs ...
متن کاملEmbedding Spanning Trees in Random Graphs
We prove that if T is a tree on n vertices with maximum degree ∆ and the edge probability p(n) satisfies: np ≥ C max{∆ log n, n } for some constant > 0, then with high probability the random graph G(n, p) contains a copy of T . The obtained bound on the edge probability is shown to be essentially tight for ∆ = n.
متن کاملEmbedding Complete Binary Trees in Product Graphs
This paper shows how to embed complete binary trees in products of complete binary trees products of shu e exchange graphs and products of de Bruijn graphs The main emphasis of the embedding methods presented here is how to emulate arbitrarily large complete bi nary trees in these product graphs with low slowdown For the embedding methods presented here the size of the host graph can be xed to ...
متن کاملThe second geometric-arithmetic index for trees and unicyclic graphs
Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 1983
ISSN: 0166-218X
DOI: 10.1016/0166-218x(83)90041-0